Best Practices for Landfill Stabilization
Based on Experiences in East Delhi

2018 ISWA World Congress, Kuala Lumpur, Malaysia
24 October, 2018

Nimmi Damodaran, Consultant to Abt Associates
James Law, SCS Engineers
Tom Frankiewicz, U.S. Environmental Protection Agency
Pradeep Khandelwal, East Delhi Municipal Corporation
East Delhi

- Population: 3.95 million (2011)
- Area: 125 sq. km.
- Density: 31,600/sq. km.
- Waste Generation: 2,100 TPD
- CCAC Waste Initiative participating city
Ghazipur Landfill

- Area: 70 acres
- Open: 1984
- Planned site life: 25 years
- Height: 55-60 m (2017)
- Daily disposal: 1,800 – 2,000 MT
- Short-lived climate pollutants:
 - Methane from open dumpsite
 - Black carbon from fires
Slope Failure

- Slope failure on September 1, 2017 resulted in 2 fatalities
- Slope ratio was estimated to be approximately 1:1.9
- 45 m wide at the crest, extended 50 m down the slope, approximately 3 m deep, and represented a waste volume of about 7,000 m3
- Causes:
 - High moisture (preceded by heavy rains)
 - Steep slopes
 - Improper operations and management
 - Surface and subsurface fires adding to instability
Post Slope Failure

• East Delhi Municipal Corporation:
 o Temporarily stopped disposal at Ghazipur landfill
 o Began clean up
 o Started moving waste to create benches
 o Sought technical assistance from the CCAC Waste Initiative

• U.S. Environmental Protection Agency:
 o provided technical expertise to conduct an analysis and identify best practices to reduce the risk of future slope failures and fires at Ghazipur
Steep slopes at Ghazipur Landfill

<table>
<thead>
<tr>
<th>Location</th>
<th>Area (Upper/Lower)</th>
<th>Slope Ratio (Vertical:Horizontal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southeast Slope</td>
<td>Upper slope</td>
<td>1:1.5 – 1:2.2</td>
</tr>
<tr>
<td></td>
<td>Lower slope</td>
<td>1:1.6 – 1:2.7</td>
</tr>
<tr>
<td>North Slope</td>
<td>Upper slope</td>
<td>1:1.3 – 1:1.9</td>
</tr>
<tr>
<td></td>
<td>Lower slope</td>
<td>1:2.3 – 1:3.8</td>
</tr>
<tr>
<td>Southwest Slope</td>
<td>--</td>
<td>1:1 – 1:1.6</td>
</tr>
<tr>
<td>Closed Area (North side)</td>
<td>Plateau area</td>
<td>5 percent</td>
</tr>
<tr>
<td>Northwest Slope</td>
<td>--</td>
<td>Shallow, well-benched, includes access road</td>
</tr>
</tbody>
</table>

Ideally slopes should be no steeper than 1:3 with benches of at least 5 m width for every 10-15 m of vertical distance down the side slope.
Slope Failure Indicators

- Cracks or non-uniform settlements
- Bulges in lower portions of the slope
- Aerial images comparison for lateral or vertical movement
- Leachate breakouts or seepage
- Perched or surface ponding in waste
- Potential surface infiltration & poor stormwater management
- Distressed vegetation
Best Practices for Slope Stabilization

- Form terraces or benches
- Cease placing waste at the top
- Grade all flat waste surfaces to slopes of at least 5% to promote positive surface runoff
- Apply a soil cover on side slopes of at least 0.3 m
- Improve waste compaction
- Monitor liquid levels
- Regularly inspect for tension cracks, deformation or rapid settlement
Potential Causes of Fires at Ghazipur site

• Surface fires:
 o Off-site source - “HOT” loads
 o Equipment
 o Smoking
 o Waste-salvagers

• Subsurface fires
 o Microbial activity producing heat
 o Plenty of fuel in waste mass
 o Air infiltration in waste mass
Best Practices for Fighting Fires

• Smother with soil
• Have a soil stockpile nearby
• Use foams and suppressants
• Avoid water, especially near slopes
• Train landfill operators
• Train local fire department(s)
East Delhi Current Actions and Considerations

• Decentralize waste management
• Continue to address slope issues
• Mine waste at landfill and use inert material for highway embankment
• Consider a vertical retaining structure
• Improve operations
Thank you! Questions?

Nimmi Damodaran
nimmidamo@gmail.com